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ABSTRACT
9"/

A numerical method for designing a converging nozzle is presented.

Since the calculations are tedious, an IBM 1401 FORTRAN program was

developed and is included in the Appendix. A relation for the thrust coefficient

in a converging nozzle is also derived for isentropic flow.

As an example of the application of the numerical method, the

analysis of a specific Tsien nozzle is included.

Approved By:

i

C. E. K_ylor

Director

Gas Dynamics/Thermoahemistry Laboratory

Approved By:

Donald D. Thompson

Technical Manager

Advanced Propulsion Section

ii
!

i



TABLE OF CONTENTS

INTRODUCTION

ANALYSIS

The Analysis of the Tsien Nozzle

The Determination of C_ vs. Pe/P for the

Given Contour of the Tslen Nozzle

DIS CUSSION

REFERENCES

APPENDIX

Flow Chart of the Tsien Nozzle Design

FORTRAN Program for the Tsien Nozzle Design

PAGE NO. :

I

Z

9

IZ

17

18

19

20

iii



Figure No. :

1

Z

3

4

5

LIST OF FIGURES

Internal Contour of a Tsien Nozzle

Velocity Distribution on the X-Axis

Stream Lines in the x, r Plane of the

Contraction Cone Together with the

Velocity Profiles of Different Sections

Pressure Distribution Along the Wall

of a Tsien Nozzle

Comparison of Theoretical and Experimental
Thrust Coefficient with Different Pressure

Ratios for a Tsien Nozzle

Page No. :

6

7

13

14

16

iv



LIST OF SYMBOLS

A t

C F

K

M

Pa

P
e

P
t

r

x

u

v

V

w

¢

Throat area

Thrust coefficient

Ratio of specific heat

Mach Number

Ambient Pressure

Stagnation Pressure

Exit Pressure

Radius

Co-ordinate

Velocity component in the x-direction

Velocity component in the r-direction

Velocity

Mass rate of flow

Stream function

FORTRAN SYMBOLS

RH(I}

PHI(I}

FX(1)

STRFU

Hermite Polynomial

Derivative of the Velocity Function

Probability Integral

Stream Function

v



INTRODUCTION

The analysis in this report is divided into two parts. The first part

is the design of the contraction nozzle for a wind tunnel. The theory of this

design is based on the paper, "On the Design of the Contraction Cone for a

Wind Tunnel", which was published by Hsne-Shen Tsien. An IBM 1401

I_'ORTRAN program which can be used to design the shape of nozzle is

given in this report. The second part is to predict the thrust coefficient

in the contraction nozzle with isentropic flow. An IBM 1401 FORTRAN

program which can be used to predict the thrust coefficient for isentropic

flow is also given in this report.

The purpose of this report is to provide theoretical information

for a given Ts_en nozzle to check the experimental results.



ANALYSIS

Analysis of the Tsien Nozzle

The following derivation is based on axi-symmetric, incompressible,

irrotational, subsonic flow. The boundary conditions are assumed to be:

u : r (;) at r° o (I-I)

V- 0 at y= 0 (I-2)

The condition for irrotational flow is

0

@X 8r
(I-3)

The equation of continuity is

--"ax&_) + _ (_) = 0

(I -4)

By combining equations (i-2) and (i-3),

obtained.

= 0 at /=0
8r

Hence, u is an even function.

By combining equations (I-2) and (I-4),

be obtained.

9
at r=O

Hence v is an odd function.

the following equation can be

(I-5)

the following equation can



The functions u and v can be written as

ZZ = Y X
_=0 71

V __

_mm

Z 2n*[

n=o y'' _2. q'l CX)

(1-6)

(1-7)

By substituting equations (1-6) and (1-7) into equation (1-3),

_"*'g_: ,, (x) = 2. ,. ,, C×)
11.0 tt "-. O

Equating equal powers of r,

]2,,-, ('O = 2 _ _ (×)

one obtains:

(1 -8)

By substituting equations (1-6) and (1-7) into equation (1-4), one obtains

2.+I ; 2 .Zrt.l.lr _c=.(,_)+ Cz,,+_) " _2,,., (x) = o
I0=0 I"; = 0

Equating equal powers of r,

_, {×)= - (2,,_,_) _,,+, (_)

Replacing n by (n - 1),

(,,-n ('_)= -2n 3_,,-, (_)

(i-9)

Equations (1-8) and (1-9) give the recurrence relation for the

function fZn as follows:

or

'--<_,,('¢) = - _',)_" (,,-q (l -10)



Therefore,

= (x) (1-11)

Substituting these expressions back into equation (1-6), one obtains,

-- (-I) '_ z,,.
?" 2_

(1- 1 Z)

By replacing n by (n + 1) in equation (1-9), the following expressions can

be obtained.

/

-' ?_,,(,0&,,,,.,(x) _ _.(,,+0

2(_+,) z_"(^ /;
?o _ _.._ I

(-,)_+'(_ + ,)

Substituting these expressions back into equation (1-7), one obtains:

_ r.Z,,÷/ (._/)n÷/ (n +/).. 2,_+l

Replacing n by (n - 1) in the preceding equation, the following expression

is obtained.

V

oo ,7-_ - I _ 1.1¢ - I

z_,'-'Cn /)=.
A"(

oo 2._ -/

Z (_j)rt z.,.,-/
z" (,_ ./)_

rl,-I

(I-13)

4



The resultant velocity is

/

{1-14)

From the definition, a stream line can be defined as:

foyf,(x,y)= __(_, y)d_ ('-")
If the velocity distribution along the axis is known, the resultant

velocity w and the stream lines can be calculated by using equations (1-14)

and (1-15). The shape of the contraction cone is then determined by the

streamline along withc the velocity still varies monotonically.

An IBM 1401 FORTRAN program for calculating the velocity and

the streamline function is given in the appendix. The velocity distribution

on the x-axis is assumed to be of the same form as the error function; i. e.,

x _

go f_ ' -C_)d (_-,6)_= Cx)=A+B _ e x

The input data are the coefficients, i.e., A and B.

From the given contour (Figure 1), the continuity equation for

incompressible flow was used to calculate the velocity distribution along

the axis. The result is shown in the following table. Then, the velocity

distribution is approximated by the following functions and plotted in Figure 2.

0 __ )_ L_ O. _.,_42 , /x = O. 5595 4- 2. 6qscqj_ _ e %

f"g0. _.Y42 _- X __ O.BO21_ /l = 0.9/27+0.E0207 ¢ d/X

_o

5
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x

•8021

.7353

•6684

.6016

.5348

.467 9

.4011

•3342

•2674

•2005

•1337

•0668

•0000

Y

• 500

.5007

• 5020

• 5040

.5060

• 5100

• 5154

• 5234

• 5354

.5548

.5836

•6217

•6684

TABLE I

TSIEN NOZZLE

2
Y

.2500

•2507

.2520

•2540

•2560

•2601

•2656

•2739

•2866

.3078

•3406

•3865

•4468

Z
w Yn

Un_ 1 - WYn_12

I. 0000

.997Z

•992O

•984Z

•9765

•9611

•941Z

•9127

•8723

.8122

•7340

.6468

•5595

Un



The Determination of C F vs. Pe/Pa for the

Given Contour of the Tsien Nozzle

The flow in the nozzle is assumed to be isentropic. Applying

the momentum equation to the control volume, the relation

(z-l)

is obtained.

Equation (2-1) may be written in a dimensionless form as

Assume the flow to be a perfect gas.

w P PV
=ev- V-

A Rr

(z-z)

(2-3)

Since
V

M = zCzCzCzCzCzCzCzCzCY_

- I + M

7" 2.

(Stagnation temperature ratio substituting the relations for M and Te/T into

2-3), the following relationship is obtained.

Iw P tl4 / q- - M

(2-4)

(z-s)

9



By using equation (2-5),

Pe = (/+ /<-/

p 2.

P in equation (2-4) can be eliminated.

M_. ) K-I

(z-6)

w/A is maximum when M = I.

(z-7)

From the energy equation and isentropic law, the exit velocity can be

written as

!.# /

(z-8)

Substituting (2-7) and (2-8) into (2-2), one obtains

- - /t" :z. /

Since the nozzle is a simple converging nozzle, (A e

critical pressure ratio.

_x_

& i

=At), Pt/Pe is the

(z-to)

lO



Substituting equation (2-10) into equation (2-9), one obtains:

F _ K7_ /2& A_ _ i K+I +I) : Pc

K

-_ /<
\i_:-i ) 7, +(-:;-q-

= /<'t77-7-,) + ,i

t K+l) -P_

_7__)_'-I &Z - Pe
(2-11)

From Equation (2-II) it is shown that the thrust coefficient in a

simple converging nozzle is a function of the ratio of the specific heat and

pressure ratio, Pe/Pa.

II



DISCUSSION

The following discussion is divided into two parts. The first part

deals with the shape of the given Tsien Nozzle, and the second part deals

with the performance of the given nozzle, i.e., CF vs. Pc/Pa.

{I) Since the shape of the Tsien nozzle is known and the flow is

incompressible, the continuity equation may be used to calculate the

velocity distribution along the x-axis. Then the velocity distribution as

calculated from the continuity relation is approximated by the function,

(l-16). Since the velocity distribution on the x-axis is known, the local

velocity and stream lines can be calculated by the program described in the

Appendix. The result of these calculations is shown in Figure 3. Any one

of the stream lines along which the local velocities are less than unity can

be considered to be the contour of a convergent nozzle. The given shape of

the Tsien nozzle is also plotted in Figure 3. The local velocity is subsonic

throughout the nozzle and the streamlines are approximately tangent to the

This Tsien nozzle can be considered a typical Tsienoriginal contour.

nozzle.

According to Tsien's design criteria, boundary layer separation

and an adverse pressure gradient may be avoided if the pressure along the

wall decreases monotonically. The wind tunnel test results for this Tsien

nozzle {plotted in Figure 4) shows that the pressure does decrease

12
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monotonically from the beginning of the cone to the end of the cone; therefore,

boundary layer separation should not occur in the typical Tsien nozzle.

(2) In the derivation of the thrust equation (2-11), isentropic flow

is assumed in the nozzle. The flow in the nozzle is approximately adiabatic

and since the nozzle is short, the frictional effects are comparatively small;

therefore, the flow may be considered isentropic. Equation 2-11 indicates

that the thrust coefficient for the Tsien nozzle is a function of the ratio of

specific heats and the pressure ratio, Pc/Pa. By assuming a value of the

ratio of specific heats, the theoretical thrust coefficient can be plotted

versus pressure ratio as shown in Figure 5. The wind tunnel test results

are also shown in the same figure so that a comparison of theoretical and

experimental data can be made. The results show that the experimental

thrust coefficient are very close.

From the theoretical analysis and experimental tests, it can be

concluded that the Tsien method may be used to design subsonic or sonic

nozzles and the performance of the Tsien nozzle gives a good agreement

with the theoretical values.

15
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C DESIGN OF THE CONTRACTION CONE FOR A WIND TUNNEL

DIMENSION RH%20_,PHI%20_,FX%21a

REACI,A,B,RMAX,XMAX

I FORMAT%FIO.5,FIO.5,FIO.5,FIO.5_

PRINTI03

103 FORMAT%IHO,IHXtgXtlHR_gX,IHU,qXtlHV,gX,3HVEL,TX,SHSTRFUn

X#O.O

102 R#O.O
STP#SQRTF_2.*3.1416a

PH #%I.ISTPn*%EXPF%-O.S*%X**2_[][]

RN#3.0
RH_In#X

RH%2n#X*X-1.

D021#3,20

RH%I[]#X*RH%I-In-RN*RH%I-2u

2 RN#RN&I.

RN#-I.O

D031#1,20

PHIIIo#RN*PH*RH%Ia

3 RN#RN*%-I._

Z#X

IF_Z-I.n5,5,I5
5 Z2#ZmZ

Z3#Z2*Z

ZS#Z3*Z2

ZT#ZS*Z2

Zg#Z7*Z2

ZII#zg*z2

ERFX#O.5641g*_z-z3/3._ZS/IO.-ZT/42._ZgI216.-ZII/1320-[]

FX%Ia#A_B*ERFX

GO TO 6

15 Y#I.l%2.*Z*Zn

YI#g,mY/_I._IO.*Y_

Y2#8.*Y/_[._YIn

Y3#T.*Y/_[.EY2_

Y_#6.*Y/_I.EY3g

YS#5.*Y/¢I._Y4a

Y6#4.*Y/%I._YSn

YT#3.*Y/%[.EY6u

YB#2.*Y/%I.CYTn

Yg#Y/%I.gYBa

SER#1./%I.gYga

ERFX#.5-SERI%3.5449*Z*EXPF%Z*Z[]n

FX%Ia#ACB*ERFX

6 CONTINUE

D071#I,20

K#1CI

7 FX%Ko#B*PHI%I_

IOI SUMU#O.O

C#-I.

P#l.

W#[.

R2#R*R

T#4.

2O



D081#2,20,2
SUMU#SUMU_%C*R2*FX%I_n/%T*%W*_2nn
R2#RZ*RmR
T#T*4.
C#C*%-I._

P#P&I.

8 W#W*P

U#FX%Ia_SUMU

SUMV#O.O

C#&I.

P#2.

W#2 •

T#I6.

Q#R*R*R

D#2.

D09I#3,21,2

SUMV#SUMVC%C*2.*D_Q*FX%I_a/IT*IWme2_

C#C*_-I._

D#D_I.

R2#R*R

Q#Q*R2

T#T-4.

P#P_I.

9 W#W*P

PHBR#PH_B*%-.So-R

V#PHBR_SUMV

VEL#SQRTFIUi*2_V**2n

SUMST#O.O

C#-I.

P#I.

T#4.

W#I.O

QG#4.

R4#RwR*RwR

D0101#2,20,2

ZUMI#R4/QG

SUMST#SUMST_%C*FX%Ia*ZUMI/%T*%Wm*2n_n

C_C*%-I.n

P#P_I.

W#W*P

QG#QG_2.0

T#T*4.

IO R4#R_*RmR

STRFU#O.5-R.R*FX%I_&SUMST

PRINTII,X,R,U,V,VEL,STRFU

II FORMAT%FIO.6,FIO.6,FIO.6,FIO.6,FIO.6,F20.IOa

R#R&.OI

IF%R-RMAXaIOI,IOI,12

12 X#X&O.I

IF%X-XMAX[]I02,102,13

13 PRINT 14

14 FORMAT% lOX, 22HPROCESS IS COMPLETE

END



C

I

2

3

4

5

8

6

7

DETERMINE THE THRUST

REACI,VKI,VK2,DVK

READI,PRI,PR2,DPR

FORMAT%3FIO.So

STP#PRI
A#I./%VKI-I.D

B#%2./%VKI&I.Om**A

COEFF#2.*B-I./PRI

PRINT4,VKI,PRI,COEFF
FORNAT_3FIO.5o

PRI#PRI&DPR

IF%PRI-PR2u3t3,5

VKI#VKI&DVK

IF_VKI-VK2o8,8,6

PRI#STP
GOT02

PRINT7

FORMAT% IOX,22HPROCESS
END

COEFFICIENT IN A

IS COMPLETE

SIMPLE CONVERGING NOZZLE
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